Resit Exam Stochastic Processes

July 2020

- You have from 8.30 until 11.30. This includes the time needed to take pictures of your work and upload it to nestor dropbox.
- It is absolutely not allowed to use calculators, phones, computers, books, notes, the help of others or any other aids.
- During the entire time you should be connected to the skype group call and be on camera, with sound turned on. Failure to do this will count as cheating.

Exercise 1 (20 pts)

Consider a Galton-Watson tree with offspring distribution given by $X \stackrel{d}{=} \operatorname{Bi}(2, p)$. Determine the probability of extinction q.

Exercise 2 (20 pts)

Let X_{1}, X_{2}, \ldots be i.i.d. $\operatorname{Be}(\mathrm{p})$-distributed (i.e. $\left.\mathbb{P}\left(X_{1}=1\right)=p, \mathbb{P}\left(X_{1}=0\right)=1-p\right)$ and let $N \stackrel{d}{=} \operatorname{Po}(\mu)$ be independent of X_{1}, X_{2}, \ldots.

Find the probability generating function of

$$
Z:=\sum_{i=1}^{N} X_{i}
$$

What distribution does Z follow?

Exercise 3 (20 pts)

Prove Stirling's formula $n!=\left(1+o_{n}(1)\right) \cdot \sqrt{2 \pi n} \cdot(n / e)^{n}$.

Exercise 4 (a:10, b:10 pts)

Consider the sequence of random variables X_{1}, X_{2}, \ldots, taking values in $\{0, \ldots, N\}$ with the property that

$$
\mathbb{P}\left(X_{i+1}=j \mid X_{1}=j_{1}, \ldots, X_{i}=j_{i}\right)= \begin{cases}p & \text { if } j=j_{i}+1 \text { and } j_{i}<N \\ 1-p & \text { if } j=j_{i}-1 \text { and } j_{i}>0 \\ 1 & \text { if } j=j_{i}=0 \text { or } j=j_{i}=N \\ 0 & \text { otherwise }\end{cases}
$$

a) Show that the sequence Y_{1}, Y_{2}, \ldots given by $Y_{i}=\left(\frac{1-p}{p}\right)^{X_{i}}$ is a martingale.
b) By the martingale convergence theorem, $Y_{n} \xrightarrow[n \rightarrow \infty]{\mathrm{d}} Y$ for some random variable Y. Give the pmf of Y in terms of the value of X_{1} and p. That is, find an expression for $\mathbb{P}\left(Y=y \mid X_{1}=x\right)$ as a function of y, x, p.

Exercise 5 (20 pts)

At a certain popular beach two species of man-eating sharks are known to occur. Starting from time $t=0$, the number of attacks by hammerhead sharks is described by a Poisson process \mathcal{P}_{1} of intensity μ_{1}, and the number of attacks by great white sharts is described by a Poisson process \mathcal{P}_{2} of intensity μ_{2}. Since it concerns distinct species of sharks, we may assume the Poisson processes are independent. We can furthermore assume that at this particular beach no other species of man-eating sharks occur. Show that the probability that the first attack is by a hammerhead shark equals $\frac{\mu_{1}}{\mu_{1}+\mu_{2}}$.

